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I - ~ABSTRACT 7 N E
Let U be uniformly distributed on (0.1) and let Y and Y Y ben-

dom vectors with nonnegative components. U Y and Y" independent. It is

shown that the relation Y -_ U(Y+Y9' satisfied if and only if the com-

ponents of Y are multiples of a single exponentially distributed random

variable.

I. One-dimensional case

In the solution to problem 159 in [3] the following question is answered. Let U.Y(l) and

y(2) be independent random variables. U uniformly distributed on (0.1). y(l) and y( 2) dis-

tributed as Y. For what distributions of Y is it true that

(1) y U( (1)+y(2)) ?

There is a two-parameter family of solutions (cf. [3]). but under the additional assump-

tion that Y is nonnegative. (1) characterizes the exponential distribttions. We state this

result as a proposition. and give a proof along the lines of the proof in [3].

Proposition 1. Let Y . o with probability 1 and let Y satisfy condition (1). Then Y has an

exponential distribution (possibly roncentrated at zero).

Proo If 4. denotes the Laplace-Stieltjes transform (LST) of the distribution of Y. i.e.

0(s)=Eexp(-sY). then (1) is equivalent to
oI
(2) 0(s)=f 1

62) d = _ ' ( t ) d

-4
LSince 4. and 2 are LST's. they are differentiable for s > 0. Differentiation of (2) yields
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(3) s '(s)+)(s ) O2(s)- B-
Distr!"Ilt I oil/

Substitution of C (f +I) - ' leads to Ava! I .I dCdos

f IS)/f (S 1/s D

with solution f (s)= as and so

(4) *(s)= 1-- -- _--
1+as

where a > 0. This proves the proposition

In exactly the same way the following generalization can be proved.

Proposition 2. If U. ) . . .,. Y(N) are independent, U uniformly distributed on (0,1) and
the Y(J) distributed as Y. then

(5) Y _ U(Y(')+...+Y(N+1))

if and only if the LST ON of Y is of the form

(6) ON(S)i 1
l+a sUN"

where a.> o.

Remark. Since exp(-s 1N) is an infinitely divisible (even stable; see [1]. p. 448) LST it fol-
lows from Theorem 2 in [4] that ON in (6) is indeed the LST of a (infinitely divisible)

probability distribution having no moments, of course. One can even make N a continuous

variable: S(1) d- U S(t+1). where S(.) is a process with nonnegative stationary and
independent increments. Then S(1) must have an ISr of the form (1+a suIj) - with

t >0.

An other generalization is considered in the next section.

2 Multi-dimensional case

Now let Y be an n-dimensional random vector with nonnegative components:

Y-(YIP ..... Ig).

and as before let U.Y (' ) and y(2 ) be independent with U uniform on (0.1) and y(l) and
y( 2 ) distributed as Y. Now let

y U (Y(s)+Y(2)).

-".'
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where addition is component-wise, and let the n-dimensional LST be defined by

(7) S0 . . . =[ Y j 1- ]
JO1

Then in exactly the same way as in (2) we have
I

1 . s.) =  I (us, us. )u.

or putting sj = a s.

sO(ats ... an$)= (02(a st .. ,ant)dt.

Writing 0 . .a~s)= Oj(s) for all a E we obtain

s 0.() 0. €.(t)dt.

the same equation as (2). It follows that for all aE R We have

(8) o(s) = (als. . . &s) = (l+a(a)s) -1 '

where a (a) = a I ..... ci ) by the definition of 0 satisfies

(9) a(sai ..... sa.) = s a(l, ... a,).

i.e. a (ar) is homogeneous of degree one. We are now ready to prove

Proposition 3. A random vector Y=(Y1 . .. Y.) with YJ . 0 (j = i.... A) satisfies
(10) Y d u(yCl)+y(2))

with U. Y(1 ) and y( 2 ) independent. U uniform on (0.1) and Y(1) d y(2 ) - Y if and only if

the 1ST j6 of Y is of the form

( 1 1 ) ( s* . . . . . . ) = 1
l+as I+ -• • +a, $A"

where a > 0, . a 0.

Prof. From (7) and (8) with sj =a j j and (9) it follows that for all (a 1 ..... f ) a+

(12) arY+"•"+a.Y 3 -a(ao ... ,a,)X.

where X is exponentially distributed with expectation one and Y 1 ,... Y. are exponential

with expectations a(l.O... 0), ... a(O.... a0.1). Taking expectations in (11) we

obtain
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(13) c a(1.0, .. 0)+ .- +a~a (0, . 0. O ) a(a , CI..A.).

If we put a(1.0, .. -)=a .... ,a(0 .... 0.1)=a.. then (11) follows from (8) and

(13).

Remark 1. From proposition 3 it follows that the only random vectors Y - (Y 1,.... Y)
satisfying (10) are of the from

Y=(aX., a.X).

where X is an exponentially distributed random variable with expectation one. This

means that Y has a (singular) exponential distribution concentrated on the ray with direc-
tion (a,.... . a.) through the origin. So. none of the classical multivariate distributions.
such as described in [2] satisfy (10).

Remark 2. One could also generalize (5) to n-dimensional vectors: this leads to results

similar to proposition 3.

Remark 3. It the condition YI> 0.....Y ; 0 is dropped than more general solutions then
(11) are possible. For n = 2. for instance. (10) is satisfied for Y with a characteristic func-

tion of the form

'(t 1 - 2 ) = +a o4 1 +t 12 -a, it -a 2 t 2) -

with a 0> 0. a I and a 2 real. A similar situation occurs for n = 1 (cf. [3]).
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